Neural Photofit: Gaze-based Mental Image Reconstruction
Florian Strohm, Ekta Sood, Sven Mayer, Philipp Müller, Mihai Bâce, Andreas Bulling
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 245–254, 2021.
Abstract
We propose a novel method that leverages human fixations to visually decode the image a person has in mind into a photofit (facial composite). Our method combines three neural networks: An encoder, a scoring network, and a decoder. The encoder extracts image features and predicts a neural activation map for each face looked at by a human observer. A neural scoring network compares the human and neural attention and predicts a relevance score for each extracted image feature. Finally, image features are aggregated into a single feature vector as a linear combination of all features weighted by relevance which a decoder decodes into the final photofit. We train the neural scoring network on a novel dataset containing gaze data of 19 participants looking at collages of synthetic faces. We show that our method significantly outperforms a mean baseline predictor and report on a human study that shows that we can decode photofits that are visually plausible and close to the observer’s mental image. Code and dataset available upon request.Links
BibTeX
@inproceedings{strohm21_iccv,
title = {Neural Photofit: Gaze-based Mental Image Reconstruction},
author = {Strohm, Florian and Sood, Ekta and Mayer, Sven and Müller, Philipp and Bâce, Mihai and Bulling, Andreas},
year = {2021},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
pages = {245--254},
doi = {10.1109/ICCV48922.2021.00031}
}