Natural and Programming Language Processing

Kick-Off of the Stuttgart ELLIS Unit

Michael Pradel

Software Lab – University of Stuttgart

Natural and Programming Language Processing

Natural and Programming Language Processing

Developers Need Tools

Key feature of humans: Ability to develop tools

Software development tools, e.g., compilers, bug detection, code completion

Creating Developer Tools

Traditional

program analysis

- Manually crafted
- Years of work
- Precise, logical reasoning
- Heuristics to handle undecidability
- Challenged by large code bases

Creating Developer Tools

Traditional program analysis

- Manually crafted
- Years of work
- Precise, logical reasoning
- Heuristics to handle undecidability
- Challenged by large code bases

Neural software analysis

- Automatically learned within hours
- Data-driven prediction
 - Learn instead of hard-code heuristics
 - Use big code to our benefit

Neural Software Analysis

Insight: Lots of data about software development to learn from

Neural Software Analysis, Pradel & Chandra, CACM'22

Neural Software Analysis

Insight: Lots of data about software development to learn from

New code,

5 - 2

Neural Software Analysis, Pradel & Chandra, CACM'22

Join the Hype!

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM'22 6 - 1

Join the Hype!

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM'22 6 - 2

Join the Hype!

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM'22 6-3

Examples of neural software analyses

1) Nalin: Name-value inconsistencies

2) TypeWriter: Type prediction

Open challenge

3) Understanding models of code

train_size = 0.9 * iris.data.shape[0]
test_size = iris.data.shape[0] - train_size
train_data = data[0:train_size]


```
file = os.path.exists('reference.csv')
if file == False:
    print('Warning: ...')
```


Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE'22

8 - 4

Finding name-value inconsistencies

Challenge 1: Understand the meaning of names Finding name-value inconsistencies

Goal

Challenge 1: Challenge 2: Understand the Understand the meaning of names meaning of values Finding name-value inconsistencies

Goal

Challenge 1: **Challenge 2: Understand the Understand the** meaning of values meaning of names Finding name-value inconsistencies Challenge 3: Precisely pinpoint unusual pairs

Overview of Nalin

Analyzing Assignments

Data gathered via dynamic analysis:

Name	Value	Туре	Length	Shape
age	23	int	null	null
probability	0.83	float	null	null
Xs_train	[[0.5 2.3]\n [ndarray	600	(600,2)
name	2.5	float	null	null
file_name	'example.txt'	str	11	null

Neural Classification Model

Two linear layers, 50% dropout, Adam optimizer, batch size=128¹²

Evaluation

Experimental setup

□ 947k name-value pairs (Jupyter notebooks)

Results

Classifier: 89% F1-score

□ User study:

Nalin points out hard-to-understand names

Complements static checkers

30 inspected warnings				
21 misleading	2 incorrect	7 false		
names	values	positives		

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE'22

14 - 2

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE'22

14 - 3

30 inspected warnings

21 misleading	2 incorrect	7 false
names	values	positives

dwarF = '/Users/iayork/Downloads/dwar_2013_2015.txt'
dwar = pd.read_csv(dwarF, sep=' ', header=None)

Model doesn't understand the abbreviation ("F" means "file")

14 - 4

Wouldn't a type checker find some of these problems?

Wouldn't a type checker find some of these problems?

Yes, but: Lots of code has no type annotations

```
def find match(color):
  ** ** **
  Args:
    color (str): color to match on and return
  ** ** **
  candidates = get_colors()
  for candidate in candidates:
    if color == candidate:
      return color
  return None
def get_colors():
  return ["red", "blue", "green"]
```


TypeWriter: Neural Type Prediction with Search-based Validation, FSE'20

Neural Type Prediction Model

TypeWriter: Neural Type Prediction with Search-based Validation, FSE'20

```
def find match(color):
  ** ** **
  Args:
    color (str): color to match on and return
  ** ** **
  candidates = get_colors()
  for candidate in candidates:
    if color == candidate:
      return color
  return None
def get_colors():
  return ["red", "blue", "green"]
```


TypeWriter: Neural Type Prediction with Search-based Validation, FSE'20

Searching for Consistent Types

Top-k predictions for each missing type

 Filter predictions using gradual type checker (e.g., mypy or pyre)

Combinatorial search problem

Feedback-directed search:
 Minimize type errors, maximize type annotations

```
def find match(color):
  ** ** **
  Args:
    color (str): color to match on and return
  ** ** **
  candidates = get_colors()
  for candidate in candidates:
    if color == candidate:
      return color
  return None
def get_colors():
  return ["red", "blue", "green"]
```


TypeWriter: Neural Type Prediction with Search-based Validation, FSE'20

Evaluation

Experimental setup

- Facebook's Python code
- □ 5.8 millions lines of open-source code

Results

- □ Neural model:
 - 80% F1-score (top-5, individual annotations)
- Neural model + search:
 - Correctly adds 75% all annotations in a file
- Subsumes traditional static type inference

Why Does It Work?

Developers use meaningful names

Source code is repetitive

Many programs available as training data

Probabilistic models + NL = \heartsuit

What are these models actually learning?

Idea: Compare Humans & Models

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE'21

Human vs. Model Attention

<pre>log.debug("Requesting new token"); int status = getHttpClient().executeMethod(method) if (status != 200) { throw new exception("Error logging in: " + method)</pre>	;			
}	.nod.getStatushine()),			
document document = new saxBuilder(false).build(method.getResponseBodyAsStream()).getDocument();				
<pre>xPath path = xPath.newInstance("/response/token"); element result = (element)path.selectSingleNode(do if (result == null) {</pre>	<pre>cument);</pre>			
<pre>element error = (element)xPath.newInstance("/response/error").selectSingleNode(</pre>				
throw new exception(error == null ? "Error logging in" : error.getText());				
} myToken = result.getTextTrim();	Human attention			

VS.

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE'21

Human vs. Model Attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE'21

25 - 2

Human vs. Model Attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE'21

Findings & Implications

Findings

- Only partial agreement on what code matters
- Higher agreement correlates with higher model accuracy

Implications

- Direct human-model comparison:
 - Helps understand why models (do not) work
- Should create models that mimic humans

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE'21

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM'22 27 - 1

General-purpose language models

General-purpose language models

Combining neural & traditional analysis

General-purpose language models

Combining neural & traditional analysis

Reasoning about executions