
1

Michael Pradel
Software Lab – University of Stuttgart

Natural and Programming
Language Processing

Kick-Off of the Stuttgart ELLIS Unit

2 - 1

Natural and Programming
Language Processing

2 - 2

Natural and Programming
Language Processing

3

Developers Need Tools

Key feature of humans:
Ability to develop tools

Software development tools,
e.g., compilers, bug detection,
code completion

4 - 1

Creating Developer Tools

Traditional
program analysis
� Manually crafted
� Years of work
� Precise, logical

reasoning
� Heuristics to handle

undecidability
� Challenged by large

code bases

4 - 2

Creating Developer Tools

Traditional
program analysis
� Manually crafted
� Years of work
� Precise, logical

reasoning
� Heuristics to handle

undecidability
� Challenged by large

code bases

Neural software
analysis
� Automatically learned

within hours
� Data-driven prediction

xxxxx
� Learn instead of

hard-code heuristics
� Use big code to our

benefit

5 - 1

Neural Software Analysis

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

Neural Software Analysis, Pradel & Chandra, CACM’22

Insight: Lots of data about software
development to learn from

5 - 2

Neural Software Analysis

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

New code,
execution,
etc.

Information
useful for
developers

Neural Software Analysis, Pradel & Chandra, CACM’22

Insight: Lots of data about software
development to learn from

6 - 1

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

6 - 2

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015

Type prediction

Bug detection

Code summarization

Program repair

Code completion

2020

6 - 3

Join the Hype!
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

CopilotTabNine

7

This Talk

Examples of neural software analyses

1) Nalin: Name-value inconsistencies

2) TypeWriter: Type prediction

Open challenge

3) Understanding models of code

8 - 1

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

8 - 2

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

Incorrect value:
135.0, should be 135

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

8 - 3

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

file = os.path.exists(’reference.csv’)

if file == False:

print(’Warning: ...’)

Incorrect value:
135.0, should be 135

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

8 - 4

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

file = os.path.exists(’reference.csv’)

if file == False:

print(’Warning: ...’)

Incorrect value:
135.0, should be 135

Misleading name:
file vs. boolean

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

8 - 5

Motivation

train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size] Commonality:
Name and value
are inconsistent

file = os.path.exists(’reference.csv’)

if file == False:

print(’Warning: ...’)

Incorrect value:
135.0, should be 135

Misleading name:
file vs. boolean

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

9 - 1

Goal

Finding name-value inconsistencies

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

9 - 2

Goal

Finding name-value inconsistencies

Challenge 1:
Understand the
meaning of names

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

9 - 3

Goal

Finding name-value inconsistencies

Challenge 1:
Understand the
meaning of names

Challenge 2:
Understand the
meaning of values

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

9 - 4

Goal

Finding name-value inconsistencies

Challenge 1:
Understand the
meaning of names

Challenge 2:
Understand the
meaning of values

Challenge 3:
Precisely pinpoint
unusual pairs

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

10

Overview of Nalin

Executable
programs

Training

Prediction

Name-value
inconsistencies

Generation of
negative
examples

Train neural
model

Query neural
model

Dynamic
analysis of
assignments

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

11

Analyzing Assignments

Data gathered via dynamic analysis:

Name Value Type Length Shape

age 23 int null null
probability 0.83 float null null
Xs train [[0.5 2.3]\n [.. ndarray 600 (600,2)
name 2.5 float null null
file name ’example.txt’ str 11 null

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

12

Neural Classification Model

Name

Value

Type

Length of
value

Shape of
value

Feed-
forward
layers

p(inconsistent)

Two linear layers, 50% dropout, Adam optimizer, batch size=128

+

Embed with
FastText

GRU,
CNN

One-
hot

One-
hot

One-
hot

13

Evaluation

� Experimental setup

� 947k name-value pairs (Jupyter notebooks)

� Results

� Classifier: 89% F1-score

� User study:

Nalin points out hard-to-understand names

� Complements static checkers

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

14 - 1

Kinds of Inconsistencies

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

14 - 2

Kinds of Inconsistencies

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

name = ’Philip K. Dick’

...

name = 2.5

Unusual combination

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

14 - 3

Kinds of Inconsistencies

prob = get_betraying_probability(information)

if prob > 1/2:

return D

Value: "Corporate"

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

14 - 4

Kinds of Inconsistencies

30 inspected warnings

21 misleading
names

2 incorrect
values

7 false
positives

dwarF = ’/Users/iayork/Downloads/dwar_2013_2015.txt’

dwar = pd.read_csv(dwarF, sep=’ ’, header=None)

Model doesn’t understand the
abbreviation (“F” means “file”)

Nalin: Learning from Runtime Behavior to Find Name-Value Inconsistencies in Jupyter Notebooks, ICSE’22

15 - 1

Wouldn’t a type checker find
some of these problems?

Yes, but: Lots of code has no
type annotations

15 - 2

Wouldn’t a type checker find
some of these problems?

Yes, but: Lots of code has no
type annotations

16 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

16 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

Parameter
type?

Return
type?

Return
type?

17

Neural Type Prediction Model

Code
tokens

Identifiers

Comments

Available
types

Type
vector

Token
embedding

Word
embedding

RNN

Hidden
layer +
Softmax

RNN

RNN

one-hot encoded
type mask

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

18 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

18 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

18 - 3

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

Top-most predictions:
Type errors

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

19

Searching for Consistent Types

� Top-k predictions for each missing type

� Filter predictions using gradual type checker

(e.g., mypy or pyre)

� Combinatorial search problem
� Feedback-directed search:

Minimize type errors, maximize type annotations

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

20 - 1

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

20 - 2

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

20 - 3

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

Top-most predictions:
Type errors

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

20 - 4

Example

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"] 1) List[str]

2) List[Any]
3) str

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) int
2) str
3) bool

Predictions:

Correct predictions

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

21

Evaluation

� Experimental setup
� Facebook’s Python code

� 5.8 millions lines of open-source code

� Results
� Neural model:

80% F1-score (top-5, individual annotations)

� Neural model + search:

Correctly adds 75% all annotations in a file

� Subsumes traditional static type inference

TypeWriter: Neural Type Prediction with Search-based Validation, FSE’20

22

Why Does It Work?

Developers use meaningful names

Source code is repetitive

Many programs available as training data

Probabilistic models + NL = ♥

23

What are these
models actually
learning?

24

Idea: Compare Humans & Models

� Same task

� Same code examples

� Measure attention and
effectiveness

vs.

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

Machine
Learning

Neural models
of code

Developers

25 - 1

Human vs. Model Attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

vs.

25 - 2

Human vs. Model Attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

vs.

Model “wastes” attention
on understanding syntax

25 - 3

Human vs. Model Attention

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

vs.
Model ignores tokens
important to developers

26

Findings & Implications

� Findings

� Only partial agreement on what code matters

� Higher agreement correlates with

higher model accuracy

� Implications
� Direct human-model comparison:

Helps understand why models (do not) work

� Should create models that mimic humans

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21

27 - 1

The Road Ahead
Papers on neural
software analysis *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

27 - 2

The Road Ahead

2015 2020

27 - 3

The Road Ahead

General-purpose
language models

2015 2020

27 - 4

The Road Ahead

General-purpose
language models

Combining neural &
traditional analysis

2015 2020

27 - 5

The Road Ahead

General-purpose
language models

Combining neural &
traditional analysis

Reasoning about
executions

2015 2020

