

Challenges for Deep Learning in Computer Vision:

Interpretability, Robustness and Security

Bernt Schiele Max Planck Institute for Informatics & Saarland University, Saarland Informatics Campus Saarbrücken

Overview

- Interpretability, Robustness and Security of Deep Learning in Computer Vision
 - ▶ Inherently Interpretable Deep Neural networks CVPR'21, CVPR'22
 - Robustness of Deep Models:
 Bright and Dark Side of Scene Context NeurIPS'18, CVPR'19, ECCV'20
 - Security of Deep Models Reverse Engineering and Stealing of Deep Models — ICLR'18, CVPR'19, ICLR'20

CoDA-Nets: Convolutional Alignment Networks for Interpretable Classification

@ CVPR 2021

B-cos Networks: Alignment is All We Need for Interpretabilituy @ CVPR 2022

Moritz Boehle MPI Informatics

Mario Fritz CISPA Helmholtz

Bernt Schiele MPI Informatics

References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)

References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)

Motivation: we aim for Inherent Interpretability

References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)

Dynamic linearity

Dynamic linearity

Dynamic linearity

Dynamic linearity allows us to faithfully summarise the model.

Alignment pressure

B-cos transformation vs. linear transformation

Linear transformation $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} = ||\mathbf{w}|| ||\mathbf{x}|| \cos(\mathbf{x}, \mathbf{w})$

New transformation B-cos(x; w) = $||\widehat{w}|| ||x|| ||\cos(x, w)|^{B} \times sgn(\cos(x, w))$

Visualisations: intermediate neurons

Summary

- Deep Neural Network explanations need to be faithful & interpretable
 - for faithfulness: B-cos is designed to be dynamic linear
 - for interpretability: B-cos induces alignment pressure
- The resulting networks are competitive classifiers...
- ... and provide interpretable explanations for their decisions

Overview

- Interpretability, Robustness and Security of Deep Learning in Computer Vision
 - ▶ Inherently Interpretable Deep Neural networks CVPR'21, CVPR'22
 - Robustness of Deep Models: Bright and Dark Side of Scene Context — NeurIPS'18, CVPR'19, ECCV'20
 - Security of Deep Models Reverse Engineering and Stealing of Deep Models — ICLR'18, CVPR'19, ICLR'20

Adversarial Scene Editing: Automatic Object Removal from Weak Supervision

Not Using the Car to See the Sidewalk: Quantifying and Controlling the Effects of Context in Classification and Segmentation @ CVPR 2019

Rakshith Shetty MPI Informatics

Mario Fritz CISPA Helmholtz

Bernt Schiele MPI Informatics

Motivation: The Bright and the Dark Side of Scene Context

• Current models heavily rely on scene context:

 Original image with cars on the left side:

 Same image without those cars:

Question: How Dependent are Current Models on Scene Context?

- Here
 - we look at a particular aspect of context : co-occurring objects
- Goals:
 - quantify context sensitivity of classification and segmentation using object removal [NeurIPS'18]
 - object removal based data augmentation for better performance

[Shetty, Fritz, Schiele, NeurIPS'18]

Qualitative Results - COCO Dataset

@mpn

Automated Testing Framework

- Idea:
 - create multiple versions of the input image with one obje
- Removal approach: [Shetty, Fritz, Schiele, NeurIPS'18]
 - use ground truth masks + in-painter trained for object rel
- Each image presents new context in the "neighbor

Towards Automated Testing and Robustification by Semantic Adversarial Data Generation @ ECCV 2020

Rakshith Shetty MPI Informatics

Mario Fritz CISPA Helmholtz

Bernt Schiele MPI Informatics

Model adaptive testing via semantic adversary

• Core Idea: Use a **generative model** + constrained **adversarial attack** to move in the data space and synthesize targeted novel failure modes

- A synthesizer \rightarrow generates objects with disentangled shape and appearance
- Adversarial optimization \rightarrow guide the synthesis to towards hard cases
- Appearance constraints \rightarrow keep synthesized appearance realistic

Illustration of the semantic adversarial attack

Synthesized hard examples - Camouflaging

Synthesized hard examples - Appearance

Prediction : Motorcycle \checkmark

Synthesized hard examples - Context

Prediction: Person \checkmark

Airplane 🗙

More examples in the paper & the supplementary

Data augmentation results: Summary

- Small but consistent improvement on **three datasets**
- Larger gains on out-of-dataset distribution test samples

	IID test set	OOD test set	
СОСО	+ 2.17%	+ 4.6%	
PASCAL VOC	+ 1.35%	+ 4.9%	
BDD 100k	+ 1.38%	+ 1.15%	

Take Home Message - Towards more Robust Models

- The bright and dark sides of scene context
 - scene context helps to achieve better performance however current models are too dependent on scene context
- Proposed new testing framework and data augmentation framework
 - automatically generate diverse set of scene context (via object removal)
 - allows to overcome some of the context dependencies
- Proposed new semantic adversarial generation framework
 - generate "semantically" constrained failure cases beyond i.i.d.
 - for automated testing and robustification
- More work required !

Overview

- Interpretability, Robustness and Security of Deep Learning in Computer Vision
 - ▶ Inherently Interpretable Deep Neural networks CVPR'21, CVPR'22
 - Robustness of Deep Models:
 Bright and Dark Side of Scene Context NeurIPS'18, CVPR'19, ECCV'20
 - Security of Deep Models Reverse Engineering and Stealing of Deep Models — ICLR'18, CVPR'19, ICLR'20

Towards Reverse Engineering Black-Box Neural Networks @ ICLR 2018

Knockoff Net: Stealing Functionality of Black-Box Models @ CVPR 2019

Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks @ ICLR 2020

Tribhuvanesh Orekondy MPI Informatics

Seong Joon Oh MPI Informatics

Bernt Schiele MPI Informatics

Mario Fritz CISPA Helmholtz

Providing ML Models is a Business Model

- Input in, prediction out. Ask \$ per query.
 - ML models are black boxes !
 - not shared: architecture, parameters, hyperparameter details (IPs)
- Research question:
 - can an adversary still infer architecture and optimization hyperparameters ?

Experimental Setup

- MNIST black box classifiers
- Three model (hyper)parameter types:
 - (1) architecture
 - (2) optimization
 - (3) training data
- Ask adversary multiple-choice questions:
 - e.g.: "Which of the following activation functions does this black box model use? [ReLU, PReLU, ELU, Tanh]"

	Code	Attribute	Values
<u></u>	act	Activation	ReLU, PReLU, ELU, Tanh
(1)	drop	Dropout	Yes, No
nre	pool	Max pooling	Yes, No
ect	ks	Conv ker. size	3, 5
hit	#conv	#Conv layers	2, 3, 4
Arc	#fc	#FC layers	2, 3, 4
A	#par	#Parameters	$2^{14}, \cdots, 2^{21}$
	ens	Ensemble	Yes, No
ot.	alg	Algorithm	SGD, ADAM, RMSprop
0	bs	Batch size	64, 128, 256
ıta	split	Data split	All ₀ , Half _{$0/1$} , Quarter _{$0/1/2/3$}
D	size	Data size	All, Half, Quarter

Method Overview: kennen

- "Kennen": to know (German) or to dig out (Korean)
- Hypothesis:
 - model outputs contain fingerprints of internal (hyper)parameters
- Approach:
 - train 5,000 diverse white box MNIST classifiers covering all hyperparameters
 - learn to classify hyperparameters using sets of input / output pairs of the 5,000 white-box models
 - apply classifier to unseen black-box models to predict their hyperparameters.

Results

- Positive:
 - kennen-io achieves 80.1% acc (1,000 queries, score outputs, 5k models).
 - for architecture and optimization (hyper)parameters

			architecture						optim		data			
Method	Output	act	drop	pool	ks	#conv	#fc	#par	ens	alg	bs	size	split	avg
Chance	-	25.0	50.0	50.0	50.0	33.3	33.3	12.5	50.0	33.3	33.3	33.3	14.3	34.9
kennen-o	prob	80.6	94.6	94.9	84.6	67.1	77.3	41.7	54.0	71.8	50.4	73.8	90.0	73.4
kennen-o	ranking	63.7	93.8	90.8	80.0	63.0	73.7	44.1	62.4	65.3	47.0	66.2	86.6	69.7
kennen-o	bottom-1	48.6	80.0	73.6	64.0	48.9	63.1	28.7	52.8	53.6	41.9	45.9	51.4	54.4
kennen-o	top-1	31.2	56.9	58.8	49.9	38.9	33.7	19.6	50.0	36.1	35.3	33.3	30.7	39.5
kennen-i	top-1	43.5	77.0	94.8	88.5	54.5	41.0	32.3	46.5	45.7	37.0	42.6	29.3	52.7
kennen-io	score	88.4	95.8	99.5	97.7	80.3	80.2	45.2	60.2	79.3	54.3	84.8	95.6	80.1

- Negative:
 - very costly (5k models)
 - scalability beyond MNIST?

Providing ML Models is a Business Model

- Input in, prediction out. Ask \$ per query.
 - ML models are black boxes !
 - not shared: architecture, parameters, hyperparameter details (IPs)
- Research question:
 - can an adversary steal the functionality of the model ?

Functionality Stealing: Knock-Off Nets (CVPR'19)

Resembles Model Distillation ... but under weaker assumptions

Query Set Selection: Challenge

Active Learning Distillation Student-Teacher $P_V = P_A$

Functionality Stealing: Knock-Off Nets

Transfer Set Construction: $\boldsymbol{x}_i \stackrel{\pi}{\sim} P_A(X)$

- Simple method: π = random
 - sample images randomly (without replacement)
 - prone to querying irrelevant images

4 Blackbox Models $F_V(X)$

Can we Learn with π = Random? Yes!

			ran	ıdom		
	P_A	Caltech256	CUBS200	Indoor67	Diabetic5	
	$\begin{array}{c} P_V(F_V) \\ P_V (\text{KD}) \end{array}$	78.8 (1×) 82.6 (1.05×)	76.5 (1×) 70.3 (0.92×)	74.9 (1×) 74.4 (0.99×)	58.1 (1×) 54.3 (0.93×)	accuracy(victim blackbox)
Closed	D^2	76.6 (0.97×)	68.3 (0.89×)	68.3 (0.91×)	48.9 (0.84×)	
Open	ILSVRC OpenImg	75.4 (0.96×) 73.6 (0.93×)	68.0 (0.89×) 65.6 (0.86×)	66.5 (0.89×) 69.9 (0.93×)	47.7 (0.82×) 47.0 (0.81×)	accuracy(knockoff)

 \Rightarrow > 0.81× accuracy of blackbox recovered

			ran	dom	adaptive					
	P_A	Caltech256	CUBS200	Indoor67	Diabetic5	Caltech256	CUBS200	Indoor67	Diabetic5	
	$\begin{array}{c} P_V(F_V) \\ P_V (\mathrm{KD}) \end{array}$	78.8 (1×) 82.6 (1.05×)	76.5 (1×) 70.3 (0.92×)	74.9 (1×) 74.4 (0.99×)	58.1 (1×) 54.3 (0.93×)	-	-	-	-	
Closed	D^2	76.6 (0.97×)	68.3 (0.89×)	68.3 (0.91×)	48.9 (0.84×)	82.7 (1.05×)	74.7 (0.98×)	76.3 (1.02×)	48.3 (0.83×)	
Open	ILSVRC OpenImg	75.4 (0.96×) 73.6 (0.93×)	68.0 (0.89×) 65.6 (0.86×)	66.5 (0.89×) 69.9 (0.93×)	47.7 (0.82×) 47.0 (0.81×)	76.2 (0.97×) 74.2 (0.94×)	69.7 (0.91×) 70.1 (0.92×)	69.9 (0.93×) 70.2 (0.94×)	44.6 (0.77×) 47.7 (0.82×)	

Can Make it Sample-Efficient? Yes!

Transfers to Real-World? Yes!

\Rightarrow Also transfers to real-world API

Learning with Less Information? Yes!

⇒ Robust to various passive defense mechanisms: e.g. argmax, top-k, rounding, …

Take Home Message - Stealing Deep Models...

- Deep models contain intellectual property
 - model and learning parameters
 - also training and annotation data
- Deploying deep models as a **black box** through an **API**
 - allows to estimate model and learn parameters (far beyond chance level)
 - allows to steal the model's functionality reliably
 - a few 1,000 queries are sufficient (or a few \$)
 - unfortunately difficult to defend open research question
 - passive defense: noising, top-k, argmax, rounding, ... not particularly effective
 - active defense: "prediction poisoning"

Challenges for Deep Learning in Computer Vision:

Interpretability, Robustness and Security

Bernt Schiele Max Planck Institute for Informatics & Saarland University, Saarland Informatics Campus Saarbrücken

