

Philipp Reiser philipp.reiser@simtech.uni-stuttgart.de

Bayesian Uncertainty Quantification with Surrogate Models

Surrogate Modelling

- Meta-model/emulator
- Statistical approximation of complex simulation
- Polynomial Chaos Expansion (PCE)
- Gaussian Processes (GP)
- Neural Networks (NN)

Bayesian Inverse Modelling using Surrogate Models We use measurement data where y is measurable, but ω not. Goal: Infer $p(\omega|y)$.

Figure 3. Experimental Data.

Figure 1. Surrogate Model.

Probabilistic Model for 1-step procedure using the surrogate model

Polynomial Chaos Expansion Surrogate approximation of true model (PCE) $\mathcal{M}(x,t,\omega) \approx \widetilde{\mathcal{M}}(x,t,\omega) = \sum_{i=0} c_i(x,t)\psi_i(\omega),$

The probabilistic model for Bayesian PCE:

$$egin{aligned} & m{c} \sim m{p}(m{c}) \ & & ilde{\sigma}_{ ext{sim}}^2 \sim m{p}(ilde{\sigma}_{ ext{sim}}^2) \ & & m{y}_{ ext{sim}} \sim \mathcal{N}(\widetilde{\mathcal{M}}(\omega_{ ext{sim}},m{c}), ilde{\sigma}_{ ext{sim}}^2) \end{aligned}$$

Figure 4. 1-step procedure.

Figure 2. Posterior Preidictive of PCE.

Tools & Methods

Stan

 Python • R

Future Applications Multidimensional Input • ODEs/PDEs Complex Biological Systems Chemical Master Equation (CME)

References

[1] Paul-Christian Bürkner et al. The sparse Polynomial Chaos expansion: a fully Bayesian approach with joint priors on the coefficients and global selection of terms. arXiv e-prints, page arXiv:2204.06043, April 2022. [2] Bob Carpenter et al. Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 2017 [3] Norbert Wiener. The Homogeneous Chaos. American Journal of Mathematics, 60(4):897–936, 1938.

