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Introduction

« Current interactive behaviour modelling methods are data-driven, and need User identification

ol 0?2 @3
" 4 F_ X FF_3

« Consider user actions as an “interactive language” Interact2Vec " Interactive task recognition
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to be manually tailored to a specific application or task

 Inspired from representation learning research in NLP, e.g., word2vecl!'],

project the original interactive behaviour to a latent embedding space
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 The space can be used to analyse the semantic meanings of interactive

behaviour, and can generalise to different scenarios and downstream tasks
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Approach — An ongoing project with mouse and keyboard data
 Log mouse and keyboard events with corresponding timestamps
* Train a Transformer-based autoencoder by reconstructing the input, predicting the next action or the randomly masked actions
« Consider the output of the encoder as the learnt embedding, then train task-specific heads to solve different downstream tasks
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Datasets Results

Our in-the-wild dataset: The Iinteract2vec model pretrained on our dataset generates useful

+ 40 participants doing 3 interactive tasks (see below) that are representations, that on both datasets:

pervasive on graphical user interfaces « Data that are semantically similar are closer in the embedding space,

ISOT dataset!?!: e.g., data from the same interactive task forms a cluster (see below)

. 24 participants using a social media platform * Results on different downstream tasks are comparable with classical

methods, i.e., feature engineering + classifier (ongoing)

31 Words (>200 required

Text Editing
Uniform manifold approximation and projection (UMAP)

on the learnt embeddings from our dataset

L © D0 ¥ @ systemrom 12pt A B I VYV 2% x == == 1=

w
t's hard to think of what | would like to write about. [padrr 13 should write on my paper or rather show how we did this really interesting data collection
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