

University of Stuttgart

Cluster of Excellence in Data-integrated Simulation Science

Project Coordinator: Prof. Dr. Steffen Staab Institute for Parallel and Distributed Systems Analytic Computing

Physics-Informed System Identification

Safe Motion Prediction with Physics and Deep Learning

Alexandra Baier

PN4

State Prediction

- \Rightarrow Deep neural networks achieve high in-distribution accuracy
- \Rightarrow Physics-informed networks improve generalizability
- \Rightarrow How to ensure predictions fulfill safety criteria?
 - Guarantee bounds on predictions

Physics Residual-Bounded LSTM

Figure 1: The proposed hybrid architecture consists of a physical model (regression

Figure 2: Ship state prediction over 900 seconds. Prediction in orange. True in blue.

Trajectory Prediction

Figure 3: Trajectory prediction over 900 seconds.

Reachability

and first-principles) and an LSTM. Concatenation of vectors is represented by a black circle. The +-operators correspond to a vector addition.

Guarantees

Predictions of our approach are bounded over all time steps, when

- LSTM predictions are clipped to a constant threshold
- Physical model is UBIBS stable
- \Rightarrow Computation of the model's reachable set enables safety verification

Results

Table 1: Root mean squared error for each state variable and trajectory.. NARX and LSTM are baselines. Other models are physics residual-bounded LSTMs (PRBL). The best and second-best score per column are marked in **bold** and **bold+italics** respectively.

Model	U	W	p	r	ϕ	Trajectory
	m/s	m/s	rad/s	rad/s	rad	m (95%)
NARX	0.135	0.099	0.0049	0.0035	0.0085	604 ± 5
LSTM	0.085	0.054	0.0056	0.0020	0.0070	$290\pm~3$
PRBL-Lin	0.077	0.048	0.0057	0.0018	0.0070	273 ± 3
PRBL-Min+Lin	0.070	0.055	0.0060	0.0020	0.0074	$269\pm~3$

Figure 4: Trajectory and corresponding reachable set is predicted by PRBL-Lin. (left) Trajectory in two-dimensions. (right) Same trajectory on x- and y-axes with time on z-axis.

Notation

 $\vec{c}_t = control vector$

 $\vec{z}_t = |u_t v_t p_t r_t \phi_t| = \text{state vector}$

 $u = surge velocity (along x-axis), v = sway velocity (along y-axis), p = roll rate (around x-axis), r = yaw rate (around z-axis), <math>\phi = roll angle$

PRBL = Physics Residual-Bounded LSTM
Lin = Linear time-invariant regression component
Hyd = Regression component including non-linear hydrodynamic terms
Min = Minimal first-principles component (mass, inertia)
Pro = First-principles component including propulsion

PRBL-Pro+Hyd 0.068 0.063 0.0058 0.0021 0.0078 285 ± 3

Code & Data

Code @ GitHub/deepsysid

Dataset @ DaRUS - SimTech PN 4-7

www.simtech.uni-stuttgart.de

References

[1] A Baier, Z Boukhers, and S Staab.

Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction. *CoRR*, 2022.

[2] A Baier, S Staab, D Aspandi, and Z Boukhers.

Physics Residual-Bounded LSTM for Safe Vehicle State Prediction. Submitted: IEEE Trans. on Neural Networks and Learning Systems.

