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Guarante:e Safety? Figure 2: Ship state prediction over 900 seconds. Prediction in orange. True in blue.

= Deep neural networks achieve high in-distribution accuracy

= Physics-informed networks improve generalizability Trajectory Prediction
= How to ensure predictions fulfill safety criteria?
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Figure 3: Trajectory prediction over 900 seconds.
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Figure 4: Trajectory and corresponding reachable set is predicted by PRBL-Lin. (left)
Results Trajectory in two-dimensions. (right) Same trajectory on x- and y-axes with time on
Z-axis.
Table 1: Root mean squared error for each state variable and trajectory.. NARX and LSTM .
are baselines. Other models are physics residual-bounded LSTMs (PRBL). The best and NOtahOﬂ
second-best score per column are marked in bold and bold-+italics respectively. C: = control vector
o r ¢ | Trajectory Zt = {Ut Vi Pt It ¢t} = state vector
rad/s  rad/s rad m (95%) u = surge velocity (along x-axis), v = sway velocity (along y-axis),
p = roll rate (around x-axis), r = yaw rate (around z-axis), ¢ = roll angle
NARX 0.135 0.099 0.0049 0.0035 0.0085 604 + 5
LSTM 0.085 0.054 0.0056 0.0020 0.0070 290 + 3 PRBL = Physics Residual-Bounded LSTM
Lin = Linear time-invariant regression component
PRBL-Lin 0.077 0.048 0.005/ 0.0018 0.0070 273+ 3 Hyd = Regression component including non-linear hydrodynamic terms
PRBL-Min+Lin 0.070 0.055 0.0060 0.0020 0.0074 269 + 3 Min = Minimal first-principles component (mass, inertia)
Pro = First-principles component including propulsion
PRBL-Pro+Hyd 0.068 0.063 0.0058 0.0021 0.0078 285 + 3
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